being on the side of the cyclopropane ling remote from these protons.
anti-2'-Aminospiro(1,4-benzodioxan-2,1'-cyclopropane) (9c). -The anti acid above was converted via the mixed carboxyliccarbonic anhydride procedure ${ }^{3 a}$ to the azide, which on pyrolysis gave the isocyanate. Alkaline hydrolysis ${ }^{3 a}$ of the isocyanate gave the amine (45%), isolated as the hydrochloride, mp 211$213^{\circ}$ (from 2 -propanol).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 56.20 ; \mathrm{H}, 5.62 ; \mathrm{Cl}$, 16.60). Found: $\mathrm{C}, 56.27 ; \mathrm{H}, 5.67 ; \mathrm{Cl}, 16.45$.
$\mathbf{N}_{1} \mathbf{N}^{\prime}$-Bis $\left[2^{\prime}\right.$-syn-spiro(1,4-benzodioxan-2,1'-cyclopropyl)] -urea.-The syn acid was converted via the mixed carboxyliccarbonic anhydride procedure ${ }^{3 a}$ to the azide. This was pyrolyzed to give the crude isocyanate, which was hydrolyzed with alkali. ${ }^{3 a}$ When cold, the reaction mixture was filtered. From the filtrate, the amine hydrochloride (6%) was isolated by extraction with dilute HCl . The solid filtered from the reaction was recrystallized from ethanol to give the urea (53%): mp 213-216 ${ }^{\circ}$; $\nu_{\max }$ $3370,1645 \mathrm{~cm}^{-1}$.

Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{50}$: $\mathrm{N}, 7.37$. Fonmd: $\mathrm{N}, 7.4$).
sym-2'-Aminospiro(1,4-benzodioxan-2,1'-cyclopropane) (8c). A.-The $\bar{N}, \bar{N}^{\prime}$-disubstituted urea above was treated with 2 equiv of phthalic anhydride according to Manske. ${ }^{10}$ After trituration with aqueous NaHCO_{3}, the product was recrystallized from ethanol to give syn-2'-N-phthalimidospiro(1,4-benzodiox-an-2, 1^{\prime}-cyclopropane) (69%): $\mathrm{mp} 164-167^{\circ} ; \nu_{\max } 1790,174 \overline{5}$, $1730 \mathrm{~cm}^{-1}$.

A suspension of this derivative in ethanol was treated under reflux with an equimolar quantity of hydrazine for 15 min . The hot reaction mixture was acidified with HCl and, when cold, it was filtered. The filtrate was basified and extracted with ether, and the ether extract was treated with gaseous HCl to precipitate the amine hydrochloride (79%), mp $220-222^{\circ}$.
B.-Alternatively, the crude isocyanate obtained on pyrolysis of the azide derived from the syn acid was hydrolyzed with con-
centrated HCl^{3} to give in one step the amine hydrochloride (62% from the acid), mp 220-222 .

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{HCl}: \quad \mathrm{C}, 56.20 ; \mathrm{H}, 5.66 ; \mathrm{Cl}$, 16.60. Found: C, $56.35 ; \mathrm{H}, 5.61$; $\mathrm{Cl}, 16.44$.
anti-2'-Guanidinospiro(1,4-benzodioxan-2,1'-cyclopropane) Sulfate ($\mathbf{2 b}$).-The free anti amine, isolated from the hydrochloride, $\mathrm{mp} 211-213^{\circ}$, was heated at 90° for 5 hr with 1 -amidino3,5 -dimethylpyrazole sulfate ${ }^{1}$ (1 equiv) in water. The product (13%) was obtained by filtration from the cooled reaction mixture and subsequent recrystallization from water. It had mp 288-290 .

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{SO}_{4}: \quad \mathrm{C}, 49.25 ; \mathrm{H}, 5.26$; N, 15.67. Found: C, 49.52; H, 5.59; N, 15.58 .
syn-2'-Guanidinospiro(1,4-benzodioxan-2,1'-cyclopropane)
Tosylate (2a).-The syn amine hydrochloride (mp 220-222 ${ }^{\circ}$) was converted to the tosylate salt by treatment of an aqueous solution of the hydrochloride with 1 equiv of p-toluenesulfonic acid. The tosylate salt was refluxed in 95% ethanol with cyanamide (10 equiv) for 16 hr . The mixture was concentrated under vacuum and treated with ether. The precipitated material was recrystallized from water to give the product (80%), $\operatorname{mp} 175-177^{\circ}$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.23 ; \mathrm{H}, 5.37$; N, 10.73. Found: C, $55.09 ; \mathrm{H}, 5.07 ; \mathrm{N}, 10.51$.

Acknowledgment.-We wish to thank our colleagues in the Pharmacology Department of Pfizer Ltd. for supplying us with the biological results reported in this paper, Mr. P. R. Wood for the microanalyses, and Mr. J. Zoro for his competent assistance. Also, we acknowledge the help of Dr. J. Feeney of Varian Associates in obtaining a confirmatory $100-\mathrm{Mc}$ /sec spectrum on compound $3\left(\mathrm{R}=\mathrm{CH}_{3}\right)$.

$a s$-Triazines. I. 5-Sulfanilamido Derivatives and Intermediates ${ }^{1}$

W. E. Taft ${ }^{2}$ and R. G. Shepherd
Organic Chemical Research Section, Lederle Laboratories Division, American Cyanamid Company, Pearl River, New York 10965

Received March 16, 196^{7}

Abstract

A series of as-triazines bearing 6-alkyl (or hydrugen) and 3-and/or 5-chloro, -methoxy, -methylthio, oxo, or -thioxo groups has been prepared. The 5 position has been established as more reactive than the 3 toward nucleophilic substitution with sulfanilamide anion. The 5 -snlfanilamido-as-triazines have good solubility but have little or no oral antibacterial activity against infections in mice.

Until the present study, exploration of the sul-fanilamido-as-triazine series was extremely limited, only two examples of this series having been recorded. ${ }^{3,4}$ These were 3 -sulfanilamido-as-triazines bearing benzo ${ }^{3}$ or pheny ${ }^{4}$ substituents in the 5 and 6 positions. Simpler sulfauilamido-as-triazines appeared accessible through 3 -amino-, ${ }^{5} 3$-amino- 5 -methyl-, ${ }^{6}$ and 3 -amino$\overline{0}, 6$-dimethyl-as-triazines. ${ }^{5}$ However, attempts to couple these amines with p-nitro- or p-acetylaminobenzenesulfonyl chloride gave complex mixtures which yielded none of the desired products. Although 3-amino- 5 , 6 -diphenyl- and 3 -aminobenzo-as-triazines

[^0]have been used successfully in such reactions, the alkyl analogs are unstable to these conditions and yield water-soluble products, presumably as a result of ring cleavage.

A possible alternative route appeared to be the reaction of a methoxy- or methylthio-as-triazine with sodium sulfanilamide, a route which had been employed in the s-triazine series. ${ }^{7}$ Furthermore, a displacement reaction had been effected with ammonia on 6 -methyl-as-triazine-3, $\overline{0}$-dithione. ${ }^{8}$ During the course of our work, examples of methylthio displacements from as-triazines by hydrazine ${ }^{9}$ and by ammonia were reported. ${ }^{10}$ A suitable intermediate for such a reaction appeared to be \quad,, 6 -dimethyl-3-methylthio-as-triazine, accessible through the corresponding 3 -thione. Repetition of
(7) (a) H. Bretschneider and W. Klötzer, Monatsh., 87, 120 (1956): (b) W. E. Taft, H. M. Krazinski, F. C. Schaefer, and R. G. Shepherd, J. Med. Chem., 8,784 (1965).
(8) E. A. Falco, E. Pappas, and G. H. Hitehings, J. Am. Chem. Soc., 78. 1938 (1956).
(9) D. Libermann and R. Jacquier, Bull. Soc. Chim. France, 383 (1961),
(10) Burrolghs Welleome and Co., British Patent 802, 122 (1958): Chem. Abstr.. 53. $7216 e$ (1959).

two reported preparations ${ }^{11,12}$ of the latter gave products which had somewhat similar properties to those reported, but which proved to be the mono- and bisthiosemicarbazones of biacetyl. Refluxing the monothiosemicarbazone in aqueous potassium carbonate, or heating it to 180° at atmospheric pressure and under vacuum, failed to effect the desired cyclization. ${ }^{13}$

On completion of these experiments, the first reported preparation ${ }^{14}$ of 3,5 -dichloro-as-triazine appeared. This compound was obtained in low yield from as-triazine-3,5-dione and "aged" POCl_{3} in the presence of triethylamine. We effected a similar transformation with 6 -methyl-as-triazine- 3,5 -dione ${ }^{15}$ (1, see Scheme I) and fresh reagent grade POCl_{3} to obtain 3,5-dichloro-6-methyl-as-triazine (2) in a yield of 3.5%. Methoxylation of 2 yielded 3,5 -dimethoxy-6-methyl-as-triazine (3), which, upon treatment with sodium sulfanilamide in refluxing methanol, underwent facile methoxy displacement t.o yield 5 -sulfanilamido3 -methoxy-6-methyl-as-triazine (4). ${ }^{16}$

Since 4 might well have had the alternative structure, 3-sulfanilamido- $\check{-}$-methoxy-6-methyl-as-triazine, its orientation was established through two sequences, both originating with 6 -methyl-as-triazin- 5 -one- 3 -thione ${ }^{1,0}$ (5 , see Scheme I). Dethiation of 5 to yield 6 -methyl$a s$-triazin- $\overline{\text {-one }}$ (6) is apparently the first successful transformation of this type in the as-triazine series. A reported ${ }^{17}$ attempt to clethiate the corresponding 6benzyl derivative caused hydrolysis to 6 -benzyl-as-triazine-3, $\overline{\text {-dione }}$ instead. A similar attempt to dethiate as-triazine-3,5-dithione led to products which were not characterized. ${ }^{14}$ Thionation of 6 was effected in

[^1]pyridine at 105° to yield 6 -methyl-as-triazine- 5 -thione (7). When this reaction was attempted at reflux, extensive decomposition resulted in a low yield of the desired product. Methylation of 7 gave 6 -methyl-5-methylthio-as-triazine (8), which, on reaction with sodium sulfanilamide, yielded $\bar{\rho}$-sulfanilamido- 6 -methy l -as-triazine (9).
The latter was also prepared by an alternative sequence. Thionation of 10^{8} (or of 5^{15}) vielded 6 -methyl-as-triazine-3, $\overline{\mathrm{D}}$-dithione ($\mathbf{1 1}$), ${ }^{8,9}$, which, on methylation, gave the 3,5 -bis(methylthio) derivative (12). ${ }^{9}$ Reaction of $\mathbf{1 2}$ with sodium sulfanilamide yielded :-sulfanilamido-6-methyl-3-methylthio-as-triazine (13). Hydrogenolysis of the methylthio group in 13 gave a sulfanilamido-6-methyl-as-triazine identical in all respects with 9 , prepared through the previous unequivocal sequence, thus confirming the orientation of 13 , as shown. Methoxylation of $\mathbf{1 3}$ gave mainly : product of the same R_{f} value as the previously prepared 4, whose structure was in doubt. A comparison of this product with 4 through their infrared and ultraviolet spectra and R_{f} values confirmed that they were identical. Thus, higher reactivity of the 5 position over the 3 position in $\mathbf{3}$ and $\mathbf{1 2}$ is established.

Preferential substitution at the 5 position of the as-triazines, demonstrated in this work and also in the amination ${ }^{8}$ of 6 -methyl-as-triazine- $3, \overline{5}$-dithione, cast. doubt ${ }^{18}$ on the structure assignments of Grundmam, et al., ${ }^{14}$ in their reactions of $3, \bar{j}$-dichloro-as-triazine with various nucleophiles. These authors assumed preferential displacement of the 3-chloro rather than the 5 -chloro substituent by a fallacious analogy with the reactivity of 2,4-dichloropyrimidine toward nucleophiles. ${ }^{19}$

[^2]The structures of the tautomeric oxygen- and sulfurcontaining $a s$-triazines herein described are the oxo and thioxo forms, rather than the hydroxy and mercapto forms. This is to be expected on the basis of the structure of $a s$-triazine-3,5-dione, ${ }^{20} 2$ - and 4pyrimidinones, ${ }^{21}$ and 2 - and 4 -pyrimidinethiones. ${ }^{22}$ These $a s$-triazin-5-ones display strong absorption due to ring-carbonyl stretching in the $1650-\mathrm{cm}^{-1}$ region. Our as-triazine-5-thiones show strong absorption in the $1193-1200-\mathrm{cm}^{-1}$ region, slightly higher than the region reported by Spinner ${ }^{23}$ to be characteristic of a number of α - and γ-thioxo azines and diazines and assigned by him to thiocarbonyl stretching.

Data on the new as-triazine intermediates are compiled in Table I. The 6-alkyl homologs of 9 and 13 in Table II were prepared by routes completely analogous to those outlined in Scheme I. Orientation of the 6alkyl homologs of 13 was assumed to be the same as in the 6 -methyl series.

These new 5 -sulfanilamido-as-triazines had little or no oral antibacterial activity as tested (Table II); ${ }^{24}$ one showed activity just below the lethal dose. Four compounds exhibited blood concentrations so low that the intrinsic activity based on attained blood level is uncertain. Great variation is apparent in the solubility of these sulfonamides, from those of extremely low solubility to the very soluble 5 -sulfanilamido- 3 -meth-oxy-6-methyl-as-triazine ($1000-1500 \mathrm{mg} \%$, see Table II).

Although the data are limited, the $\mathrm{p} K_{\mathrm{a}}$ values of these 5 -sulfanilamido-as-triazines are consistent with the meta-substituent constants ${ }^{25}$ of the R_{3} substituents: $\mathrm{H}, \sigma_{m}=0 ; \mathrm{OCH}_{3}, \sigma_{m}=0.115 ; \mathrm{SCH}_{3}, \sigma_{m}=0.144$.

Experimental Section ${ }^{26}$

3,5-Dichloro-6-methyl-as-triazine (2).-Triethylamine (65.8 g , 0.650 mole) was added slowly with stirring to 199 g (1.30 moles) of ice-cooled POCl_{3}. 6-Methyl-as-triazine-3,5-dione ${ }^{15}$ (41.3 g , 0.325 mole) was added to the resulting slurry and the mixture was refluxed with stirring for 15 min . After cooling, the dark brown solution was extracted with ten $200-\mathrm{ml}$ portions of hexane. Concentration of the extracts left a brown crystalline residue. which was vacuum sublimed at $80-90^{\circ}(1.0 \mathrm{~mm})$ to yield light yellow crystals (12.1 g) melting at $41 . \overline{0}-44^{\circ}$. Continuous extraction of the reaction mixture with hexane for 3 days yielded 6.7 g of additional material. A second sublimation yielded very pale yellow crystals for analysis.
Lower yields ($9-15 \%$) resilted with twice as much POCl_{3} or twice the reaction time.
3,5-Dimethoxy-6-methyl-as-triazine (3), -A solution of 2 (4.35 $\mathrm{g}, 0.0265 \mathrm{~mole}$) in 20 ml of methanol was treated by slow addition, with stirring, of a solution prepared by dissolving 1.22 g (0.053 g -atom) of Na in 50 ml of methanol. After removal of NaCl , the filtrate was concentrated to dryness. The residue was extracted with 60 ml of hexane and the filtered extract was cooled to 0°.
5-Sulfanilamido-3-methoxy-6-methyl-as-triazine (4). Method 1,-Sulfanilamide ($1.68 \mathrm{~g}, 9.78$ mmoles) was dissolved in a solution of 0.225 g (9.78 mg -atoms) of Na in 10 ml of dry methanol.

[^3]
Tabile II

 are indebled to Mr. (i. N. Redin
W. Wift, ind II. M. Krainski,
the methyl gromps of the ethanol the methyl groups of the ethanol
the methydene protoms of ethimol $11 \mathrm{~g} / \mathrm{kg}$.

Table III

Compd 4 by method 2
-5-Sulfa-3-methoxy-6-methyl-as-triazine (4)
j-Sulfa-6-methyl-3-methylthio-as-triazine (13)

$\mathrm{CH}_{3} \mathrm{OH}$	0.12 N NaOH	0.15 HCl
260,290 sh (19,800, 12, 100)	25\%, 293 (18,300, 12,900)	$281(12,10 t)$)
260), 290 sh (21,600, 13, 0t) 0)	254, 293 ($17,500,12.10 t)$)	$282(12,700)$
257 (28,300)	253, 308sh (26.500, 820t))	$\underline{-64}(19,800)$

of NH_{3}. The mixture was refluxed with stirring for 2 hr . Paper chromatography indicated total disappearance of starting material ($R_{;} 0.40$) and formation of a major product with $R_{f} 0.23$. The supernatant was decanted and centrifuged. The centrifugate was concentrated almost to dryness and the residue was dissolved in 2.5 ml of 0.5 NaOH and the mixture was centrifuged. The centrifugate was adjusted to pH 3 by dropwise addition of 6 A HCl . The pale yellow precipitate ($87 \mathrm{mg}, 33 \%$) melted at 243° dec. A portion (77 mg) was recrystallized from 6 ml of ethanol (charcoal) to yield off-white spears (35 mg) melting at $251.5-$ 252.5° dec.

5-Sulfanilamido-3-methoxy-as-triazine.-A solution of 1.72 g (5.79 mmoles) of $\overline{5}$-sulfanilamido- 3 -methylthio-as-triazine in 13.5 ml of $1 / \mathrm{NaOCH} \mathrm{N}_{3}$ in methanol was refluxed for 92 hr . The solution was concentrated to dryness and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$. The solution was adjusted to pH 4.5 and the precipitate (1.10 g) obtained was recrystallized from 1100 ml of boiling ethanol (charcoal).

5-Sulfanilamido-6-methyl-3-methylthio-as-triazine (13) was prepared by method 1 for 9 except for a 2 -hr reaction time.

5-Sulfanilamido-6-ethyl-3-methylthio-as-triazine.-A mixture of 6.04 g (30.0 mm moles) of 6 -ethyl-3,5-bis(methylthio)-astriazine and 6.12 g ($31 . \overline{5}$ mmoles) of sodium sulfanilamide in 60 mll of DMIF was stirred at $105-110^{\circ}$ for 7 hr . After the solution was concentrated at 60° under an oil pump, the resulting syrup was dissolved in 80 ml of water. The solution was ice cooled and adjusted to pH 3 . The yellow precipitate ($7.98 \mathrm{~g}, \mathrm{mp} 127-$ 180°) was recrystallized from 75 ml of methanol (charcoal) to give orange crystals (3.72 g) melting over a range. Recrystallization from 170 ml of ethanol (charcoal) yielded pale yellow leaflets $(2.43 \mathrm{~g}, 22 \%)$ which melted at 134° if plunged into bath at this temperature, resolidified, and remelted at 198-199 .

Biacetyl Monothiosemicarbazone.-A mixture of $9.1 \mathrm{~g}(0.10$ mole) of thiosemicarbazide and 86 g (1.0 mole) of biacetyl was stirred for 48 hr . Ethanol (100 ml) was added and the yellow solid was filtered, washed, and dried, $6.9 \mathrm{~g}(43 \%), \mathrm{mp} 177-178^{\circ}$ (gas evolution). The filtrate, on chilling, yielded 1.6 g of similar material (total, 53%). Recrystallization from ethanol ($21 \mathrm{ml} / \mathrm{g}$, charcoal) yielded light yellow crystals melting at $180 . \overline{5}-181^{\circ}$ (lit. ${ }^{27} 185^{\circ}$); $\nu_{\max } 1686\left(\mathrm{C}=\mathrm{O}\right.$ stretching), 1595 and $1505 \mathrm{~cm}^{-1}$.
Anal. Caled for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 37.7: \mathrm{H}, 5.7 ; ~ N, ~ 26.4$. Found: C, 37.9; H, $\mathbf{0 . 8}$; N, 26.1.

Biacetyl Mono- and Bis(thiosemicarbazone).-The conditions reported to give 5,6 -dimethyl-3-thioxo-as-triazine gave instead the following results. Lnder the conditions of Klosa, ${ }^{12}$ equimolar (0.010 mole) amonnts of biacetyl and thiosemicarbazide in 100

[^4]nul of refluxing ethanol gave 56% of bis(thiosemicarbazone) and, from the filtrate, $12 C^{\circ}$ of the nonothiosemicarbazone. Both were identified by melting point and ir sectral comparisons with anthentic sannples.

Tinder the conditions of Buu-Hoï, et al., ${ }^{11}$ nsing reflusing acetic acid, there resulted a 34% yield of bis(thiosemicarbayone) (variable mp 270° dec, lit. $28 \mathrm{mp} 255^{\circ}$ and 272°; $\nu_{\text {max }} 1495,1595$ (m^{-1}; C, H, N, and S analyses).

Biacetyl S-Methylthiosemicarbazone.-A mixture of 23.3 g (0.100 mole) of S-methylthiosemicarbazide and 86.0 g (1.00 mole) of biacetyl was stirred at room temperature for 2 hr . The solution was stirred with an equal volume of ethyl ether with cooling to effect separation of a brown viscous oil. The ether layer was decanted and the oil was stirred with 112 ml of a 5% sodium carbonate solution. The resulting light yellow solid $(12.4 \mathrm{~g}, 72 \%)$ melted at $139.5-141.5^{\circ}$. A portion (1.00 g) was dissolved in 20 mil of a $4: 1$ mixture of $90-100^{\circ}$ petroleum etherethanol (charcoal), giving light yellow crytals ($0.47 \mathrm{~g}, \mathrm{mp} 141-$ 142°).
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{SO}: \mathrm{C}, 41.6 ; \mathrm{H}, 6.4 ; \mathrm{N}, 24.2$. Found: C, 42.1; H, 6.6; N, 24.2.

6-Methyl-as-triazine-3,5-dithione (11).9—A powdered mixture of $10^{8}(15.7 \mathrm{~g}, 0.100 \mathrm{~mole})$ and $22.2 \mathrm{~g}(0.100 \mathrm{~mole})$ of $\mathrm{P}_{2} \mathrm{~S}_{5}$ in 8) ml of pyridine was stirred at reflux for 2 hr . The solution was concentrated to about half-volume at 50° under an oil pump and the residue was drowned in 300 ml of water with stirring. The precipitate was filtered and dissolved (mostly) in 100 ml of 1 A NaOH. The filtrate on cooling and acidifying to pH 3 with 6 N HCl , yielded an orange-yellow solid, $14.7 \mathrm{~g}(85 \%)$, mp 204° dec. A portion (0.32 g) was recrystallized from 10 ml of 50% ethanol (charcoal) to yield orange-yellow crystals (90 mg) melting at 221° dec (lit. ${ }^{9} 215-217^{\circ}$), $\nu_{\text {max }} 1115,1224 \mathrm{~cm}^{-1}$.

Anal. Caled for $\mathrm{C}_{1} \mathrm{H}_{\mathrm{N}} \mathrm{N}_{3} \mathrm{~S}_{2}: \mathrm{C}, 312,2 ; \mathrm{H}, 3.2 ; \mathrm{N}, 26.4, \mathrm{~S}, 40.3$. Found: C, 30.9; H, 3.3; N, 26.3; S, 40.3 .

Paper Chromatography.-The chromatograms were run on Whatman No. 1 paper in descending fashion, using for development the top layer of a $9: 1: 8 \mathrm{BnOH}-\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$ system. The dried sheets were examined inider an ultraviolet lamp for quenching or fluorescence. The sheets were sprayed with $5: 1: 6 \mathrm{BuOH}-$ $\mathrm{AcOH}-\mathrm{BuONO}$ followed (after 2 min) by a 0.1% butanol solution of N-(1-naphthyl)ethylenediamine dihydrochloride. The presence of a primary arylamino gronp was indicated by a purple color.

Acknowledgment.-We are indebted to Mr. L. Brancone and associates for the analytical data and to Mr. W. Fulmor, Mr. G. Morton, and associates for the spectroscopic data herein.
(28) B. A. Gingras, T. Suprunclunk, and C. H. Payley, Cmn. J. Chem., 40, 1057 (1962).

[^0]: (1) Presented in part at the 150 th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept 12-17, 1965, Abstracts, p 12P. (2) To whom correspondence should be addressed at Acadian Instruments, P. O. Box 342, Don Mills, Ontario. Canada.
 (3) F. J. Wolf, K. Pfister, 3rd, R. M. Wilson, Jr., and C. A. Robinson, J. Am. Chem. Soc., 76, 3551 (1954),
 (4) G. W. Raiziss, L. W. Clemence, and M. Freifelder, ibid., 63, 2739 (1941).
 (5) J. G. Erickson, ibid., 74, 4706 (1952).
 (6) Prepared by the method of ref 3 by Drs. J. Semb and R. B. Angier of these laboratories: mp 180 . Anal. Caled for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4}$: N. 51.0. Found: N. 51.1 .

[^1]: (11) Ng. Plı, Bua-Hoï, Ng. D. Nuong, and F, Binon, J. Chem, Sor:, F13 (19:16).
 (12) J. Klosa, Arch. Pharm., 288, 465 (1955).
 (13) We wish to thank Miss 11. M. Krazinski for performing these experiments.
 (14) C. Grundmann, H. Schroeder, and R. Rätz, J. Org. Chem., 23, 1522 (1958).
 (15) J. Bongault and L. Daniel, Compt. Rend., 186, 1216 (1928).
 (16) Reaction of 2 directly with sodinm sulfanilamide resulted in formabion of a complex inixture.
 (193:3).

[^2]: (18) One of the assigned simetures, 5 -ethoxy-3-methylhio-u-himzine, is probably correct since a 1 wo-step preferential substitution at the 5 ursition has been postulated by R. G. Shepherd and J. L. Fedrick. Adtun. Hoterocyclic Chem. 4, 298 (1985).
 (19) Reaction of 2,4-lichloropyrimidine wilh Nll ${ }_{3}$ vields a misture of the two possible aminochloro derivatives and with 1 mole of methoxide yjelds only 2 -chlorm-4-methoxybyrimidine. See D. I Hrowri, "The Pyrimitines," Intersciente Puldishers, Ine., New York, N. Y., 1162, 11, 188. 201 ilso see ref 18. 1) 2!13.

[^3]: (20) J. Jonáš and J. Gut. Collection Czech. Chem. Commun., 26, 2155 1961).
 (21) D. J. Brown, E. Hoerger, and S. F. Mason. J. Chem. Soc., 211 (1955).
 (22) A. Albert and G. B. Barlin, ibid., 3129 (1982).
 (23) E. Spinner, ibid., 1237 (1960).
 (24) We are indebted to Mr. G. S. Redin and Miss M. F. McCoy of our Fxperimental Therapeutics Research Section for these results.
 (25) 11. I1. Jaffé, Chem. Rẹ.. 53. 222 (1953).
 (26) Melting points were determined in a modified Mershberg apparatas and are corrected. Infrared spectra were determinel in KBr disks in a Perkin-Elmer Model 21 spectrophotometer.

[^4]: (27) S. S. Gtha-Sirear and S. Satpathy, J. Indian Chem. Soc., 31, 450 (1954), gave no preparative details for this compotind. The melting point was variable due to tenacious solvation, which is believed to explain the broad, low melting point ($136-141^{\circ}$) obtained by P. T. S. Sah and T. C. 1)aniels, Rec. True. Chim., 69. 1552 (1950).

